1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363 | """
An interactive spline demo.
"""
from flexx import app, event, ui
from flexx.pyscript import window
GENERAL_TEXT = """
The splines in this exampe are used to interpolate a line between
control points. The the range of influence is shown when a control point
is clicked. Move the control points by dragging them. Points can be
added and deleted by holding shift and clicking.
"""
LINEAR_TEXT = """
This is not really a spline, but its included for reference. Linear
interpolation is C0 continuous, and relatively easy to implement.
"""
BASIS_TEXT = """
A B-spline is a C2 continuous non-interpolating spline, used extensively
in (3D) modeling.
"""
CARDINAL_TEXT = """
A Cardinal spline is a specific type of cubic Hermite spline, and is
C1 continous. Its tension parameter makes it very versatile.
"""
CATMULLROM_TEXT = """
The Catmull–Rom spline is a Cardinal spline with a tension of 0. It is
commonly used in computer graphics to interpolate motion between key frames.
"""
LAGRANGE_TEXT = """
The Lagrange polynomials result in (C0 continous) interpolation
equivalent to Newton a polynomial. It is, however, know to suffer from
Runge's phenomenon (oscilating).
"""
LANCZOS_TEXT = """
Lanczos interpolation (C1 continous) is based on a windowed sinc
function and is usually considered to produced the best result from the
perspective of the fourier domain. It's mainly used in applications
related audio.
"""
class SplineWidget(ui.CanvasWidget):
class Both:
SPLINES = ['linear', 'basis', 'cardinal', 'catmullrom', 'lagrange', 'lanczos']
@event.prop
def spline_type(self, v='Cardinal'):
""" The type of spline.
"""
v = v.lower().replace(' ', '')
if v not in self.SPLINES:
raise ValueError('Invalid spline type')
return v
@event.prop
def closed(self, v):
""" Whether the spline is closed.
"""
return bool(v)
@event.prop
def tension(self, v=0.5):
""" The tension parameter for the Cardinal spline.
"""
return float(v)
class JS:
def init(self):
self.ctx = self.node.getContext('2d')
self.xx = [0.90, 0.80, 0.70, 0.60, 0.50, 0.40, 0.10, 0.23, 0.61, 0.88]
self.yy = [0.90, 0.60, 0.90, 0.60, 0.90, 0.70, 0.55, 0.19, 0.11, 0.38]
@event.prop
def _current_node(self, v=None):
return v
def factors_linear(self, t):
return [0, t, (1-t), 0]
def factors_basis(self, t):
f0 = (1 - t)**3 / 6.0
f1 = (3 * t**3 - 6 * t**2 + 4) / 6.0
f2 = (-3 * t**3 + 3 * t**2 + 3 * t + 1) / 6.0
f3 = t**3 / 6.0
return f0, f1, f2, f3
def factors_cardinal(self, t):
tension = self.tension
tau = 0.5 * (1 - tension)
f0 = - tau * (t**3 - 2 * t**2 + t)
f3 = + tau * (t**3 - 1 * t**2)
f1 = 2 * t**3 - 3 * t**2 + 1 - f3
f2 = - 2 * t**3 + 3 * t**2 - f0
return f0, f1, f2, f3
def factors_catmullrom(self, t):
f0 = - 0.5 * t**3 + 1.0 * t**2 - 0.5 * t
f1 = + 1.5 * t**3 - 2.5 * t**2 + 1
f2 = - 1.5 * t**3 + 2.0 * t**2 + 0.5 * t
f3 = + 0.5 * t**3 - 0.5 * t**2
return f0, f1, f2, f3
def factors_lagrange(self, t):
k = -1.0
f0 = t / k * (t-1) / (k-1) * (t-2) / (k-2)
k = 0
f1 = (t+1) / (k+1) * (t-1) / (k-1) * (t-2) / (k-2)
k= 1
f2 = (t+1) / (k+1) * t / k * (t-2) / (k-2)
k = 2
f3 = (t + 1) / (k+1) * t / k * (t-1) / (k-1)
return f0, f1, f2, f3
def factors_lanczos(self, t):
sin = window.Math.sin
pi = window.Math.PI
tt = (1+t)
f0 = 2*sin(pi*tt)*sin(pi*tt/2) / (pi*pi*tt*tt)
tt = (2-t)
f3 = 2*sin(pi*tt)*sin(pi*tt/2) / (pi*pi*tt*tt)
if t != 0:
tt = t
f1 = 2*sin(pi*tt)*sin(pi*tt/2) / (pi*pi*tt*tt)
else:
f1 =1
if t != 1:
tt = (1-t)
f2 = 2*sin(pi*tt)*sin(pi*tt/2) / (pi*pi*tt*tt)
else:
f2 = 1
return f0, f1, f2, f3
@event.connect('mouse_down')
def _on_mouse_down(self, *events):
for ev in events:
w, h = self.size
# Get closest point
closest, dist = -1, 999999
for i in range(len(self.xx)):
x, y = self.xx[i] * w, self.yy[i] * h
d = ((x - ev.pos[0]) ** 2 + (y - ev.pos[1]) ** 2) ** 0.5
if d < dist:
closest, dist = i, d
# Did we touch it or not
if dist < 9:
i = closest
if 'Shift' in ev.modifiers: # Remove point
self.xx.pop(i)
self.yy.pop(i)
self._current_node = None
self.update()
else:
self._current_node = i
else:
if 'Shift' in ev.modifiers:
# Add point
if not self.xx:
i = 0 # There were no points
else:
# Add in between two points. Compose the vectors
# from closest points to neightbour points and to the
# cicked point. Check with which vector the latter vector
# aligns the best by calculating their angles.
#
# Get the three points
p0 = self.xx[closest+0] * w, self.yy[closest+0] * h
if closest == 0:
p2 = self.xx[closest+1] * w, self.yy[closest+1] * h
p1 = p0[0] - (p2[0] - p0[0]), p0[1] - (p2[1] - p0[1])
elif closest == len(self.xx) - 1:
p1 = self.xx[closest-1] * w, self.yy[closest-1] * h
p2 = p0[0] - (p1[0] - p0[0]), p0[1] - (p1[1] - p0[1])
else:
p1 = self.xx[closest-1] * w, self.yy[closest-1] * h
p2 = self.xx[closest+1] * w, self.yy[closest+1] * h
# Calculate vectors, and normalize
v1 = p1[0] - p0[0], p1[1] - p0[1]
v2 = p2[0] - p0[0], p2[1] - p0[1]
v3 = ev.pos[0] - p0[0], ev.pos[1] - p0[1]
m1 = (v1[0]**2 + v1[1]**2)**0.5
m2 = (v2[0]**2 + v2[1]**2)**0.5
m3 = (v3[0]**2 + v3[1]**2)**0.5
v1 = v1[0] / m1, v1[1] / m1
v2 = v2[0] / m2, v2[1] / m2
v3 = v3[0] / m3, v3[1] / m3
# Calculate angle
a1 = window.Math.acos(v1[0] * v3[0] + v1[1] * v3[1])
a2 = window.Math.acos(v2[0] * v3[0] + v2[1] * v3[1])
i = closest if a1 < a2 else closest + 1
self.xx.insert(i, ev.pos[0] / w)
self.yy.insert(i, ev.pos[1] / h)
self._current_node = i
@event.connect('mouse_up')
def _on_mouse_up(self, *events):
self._current_node = None
@event.connect('mouse_move')
def _on_mouse_move(self, *events):
ev = events[-1]
if self._current_node is not None:
i = self._current_node
w, h = self.size
self.xx[i] = ev.pos[0] / w
self.yy[i] = ev.pos[1] / h
self.update()
@event.connect('size', 'spline_type', 'tension', 'closed', '_current_node')
def update(self, *events):
# Init
ctx = self.ctx
w, h = self.size
ctx.clearRect(0, 0, w, h)
# Get coordinates
xx = [x * w for x in self.xx]
yy = [y * h for y in self.yy]
#
if self.closed:
xx = xx[-1:] + xx + xx[:2]
yy = yy[-1:] + yy + yy[:2]
else:
xx = [xx[0] - (xx[1] - xx[0])] + xx + [xx[-1] - (xx[-2] - xx[-1])]
yy = [yy[0] - (yy[1] - yy[0])] + yy + [yy[-1] - (yy[-2] - yy[-1])]
# Draw grid
ctx.strokeStyle = '#eee'
ctx.lineWidth = 1
for y in range(0, h, 20):
ctx.beginPath()
ctx.moveTo(0, y)
ctx.lineTo(w, y)
ctx.stroke()
for x in range(0, w, 20):
ctx.beginPath()
ctx.moveTo(x, 0)
ctx.lineTo(x, h)
ctx.stroke()
# Draw nodes
ctx.fillStyle = '#acf'
ctx.strokeStyle = '#000'
ctx.lineWidth = 2
for i in range(1, len(xx)-1):
ctx.beginPath()
ctx.arc(xx[i], yy[i], 9, 0, 6.2831)
ctx.fill()
ctx.stroke()
# Select interpolation function
fun = self['factors_' + self.spline_type]
if not fun:
fun = lambda : (0, 1, 0, 0)
# Draw lines
for i in range(1, len(xx)-2):
ctx.lineCap = "round"
ctx.lineWidth = 3
ctx.strokeStyle = '#008'
support = 1 if self.spline_type == 'linear' else 2
if self._current_node is not None:
if i - (support + 1) < self._current_node < i + support:
ctx.strokeStyle = '#08F'
ctx.lineWidth = 5
# Get coordinates of the four points
x0, y0 = xx[i-1], yy[i-1]
x1, y1 = xx[i+0], yy[i+0]
x2, y2 = xx[i+1], yy[i+1]
x3, y3 = xx[i+2], yy[i+2]
# Interpolate
ctx.beginPath()
# lineto = ctx.moveTo.bind(ctx)
lineto = ctx.lineTo.bind(ctx)
n = 30
for t in [i/n for i in range(n+1)]:
f0, f1, f2, f3 = fun(t)
x = x0 * f0 + x1 * f1 + x2 * f2 + x3 * f3
y = y0 * f0 + y1 * f1 + y2 * f2 + y3 * f3
lineto(x, y)
lineto = ctx.lineTo.bind(ctx)
ctx.stroke()
class Splines(ui.Widget):
def init(self):
with ui.HBox():
with ui.VBox(flex=0):
self.b1 = ui.RadioButton(text='Linear')
self.b2 = ui.RadioButton(text='Basis')
self.b3 = ui.RadioButton(text='Cardinal', checked=True)
self.b4 = ui.RadioButton(text='Catmull Rom')
self.b5 = ui.RadioButton(text='Lagrange')
self.b6 = ui.RadioButton(text='Lanczos')
ui.Widget(style='min-height:10px')
self.closed = ui.CheckBox(text='Closed')
ui.Widget(style='min-height:10px')
self.tension_label = ui.Label(text='Tension: 0.5')
self.tension = ui.Slider(min=-0.5, max=1, value=0.5)
ui.Widget(flex=1)
with ui.VBox(flex=1):
ui.Label(text=GENERAL_TEXT, wrap=True, style='font-size: 12px;')
self.explanation = ui.Label(text=CARDINAL_TEXT, wrap=True,
style='font-size: 12px;')
self.spline = SplineWidget(flex=1)
class JS:
LINEAR_TEXT = LINEAR_TEXT
BASIS_TEXT = BASIS_TEXT
CARDINAL_TEXT = CARDINAL_TEXT
CATMULLROM_TEXT = CATMULLROM_TEXT
LAGRANGE_TEXT = LAGRANGE_TEXT
LANCZOS_TEXT = LANCZOS_TEXT
@event.connect('b1.checked', 'b2.checked', 'b3.checked', 'b4.checked',
'b5.checked', 'b6.checked')
def _set_spline_type(self, *events):
ev = events[-1]
self.spline.spline_type = ev.source.text
type = self.spline.spline_type
self.explanation.text = self[type.upper() + '_TEXT']
if type == 'cardinal':
self.tension.style = self.tension_label.style = 'visibility: visible'
else:
self.tension.style = self.tension_label.style = 'visibility: hidden'
@event.connect('tension.value')
def _set_tension(self, *events):
t = self.tension.value
self.tension_label.text = 'Tension: ' + t
self.spline.tension = t
@event.connect('closed.checked')
def _set_closed(self, *events):
self.spline.closed = self.closed.checked
if __name__ == '__main__':
m = app.launch(Splines)
app.start()
|