1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171 | # flake8: noqa
"""
Examample data-viz app. It shows real temperature data from the region
where I live. The data are monthly average temperatures for the pas 65
years. The month can be selected with a slider. Via another slider, the
data can be smoothed so the upward trend can be made more apparent.
This app can be exported to a standalone HTML document.
"""
from flexx import app, ui, event
# Raw data obtained from
# http://www.knmi.nl/klimatologie/maandgegevens/datafiles/mndgeg_290_tg.txt
raw_data = """
Deze gegevens mogen vrij worden gebruikt mits de volgende bronvermelding wordt gegeven:
KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT (KNMI)
These data can be used freely provided that the following source is acknowledged:
ROYAL NETHERLANDS METEOROLOGICAL INSTITUTE
MAAND- en JAARGEMIDDELDE TEMPERATUREN (0.1 graden Celsius)
MONTHLY AND YEARLY MEAN TEMPERATURES (0.1 degrees Celsius)
STN = stationsnummer / WMO-number = 06... (235=De Kooy,240=Schiphol,260=De Bilt,270=Leeuwarden,280=Eelde,
290=Twenthe,310=Vlissingen,344=Rotterdam,370=Eindhoven,380=Maastricht)
STN,YYYY, JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC, YEAR
290,1951, 35, 35, 34, 74, 120, 154, 169, 171, 155, 85, 82, 44, 97
290,1952, 19, 20, 43, 107, 129, 149, 172, 173, 111, 80, 23, 10, 86
290,1953, 11, 15, 47, 91, 133, 162, 170, 167, 140, 115, 71, 48, 98
290,1954, -11, -10, 57, 65, 128, 156, 142, 160, 138, 116, 65, 51, 88
290,1955, -1, -5, 16, 82, 100, 146, 179, 181, 146, 92, 58, 42, 86
290,1956, 17, -71, 50, 50, 127, 130, 166, 140, 146, 94, 46, 49, 79
290,1957, 32, 49, 80, 83, 102, 166, 176, 156, 124, 107, 60, 24, 97
290,1958, 16, 32, 15, 62, 129, 148, 168, 177, 157, 109, 54, 44, 93
290,1959, 12, 7, 72, 103, 131, 164, 192, 180, 156, 111, 52, 39, 102
290,1960, 21, 25, 55, 88, 130, 161, 153, 155, 133, 107, 73, 26, 94
290,1961, 14, 61, 71, 104, 106, 157, 152, 158, 172, 114, 45, 8, 97
290,1962, 31, 21, 14, 80, 99, 135, 145, 152, 127, 104, 39, -14, 78
290,1963, -63, -38, 45, 91, 112, 158, 165, 153, 137, 91, 81, -15, 76
290,1964, -1, 28, 23, 91, 143, 156, 169, 161, 142, 78, 58, 20, 89
290,1965, 24, 11, 37, 76, 117, 150, 147, 152, 131, 98, 19, 38, 83
290,1966, -3, 37, 46, 87, 135, 171, 155, 158, 134, 111, 38, 36, 92
290,1967, 32, 48, 64, 70, 128, 146, 181, 163, 141, 116, 47, 25, 97
290,1968, 7, 13, 59, 95, 106, 155, 161, 168, 142, 111, 50, -7, 88
290,1969, 37, -7, 13, 77, 129, 145, 175, 168, 137, 115, 60, -25, 85
290,1970, -4, 4, 21, 56, 125, 170, 154, 165, 136, 99, 72, 18, 85
290,1971, 22, 32, 23, 78, 138, 138, 170, 171, 125, 97, 46, 50, 91
290,1972, -3, 34, 61, 71, 116, 137, 172, 151, 108, 82, 53, 32, 85
290,1973, 23, 23, 49, 54, 119, 160, 171, 176, 145, 83, 49, 23, 90
290,1974, 51, 42, 55, 85, 112, 143, 147, 164, 129, 64, 62, 66, 93
290,1975, 62, 27, 43, 69, 108, 147, 176, 195, 148, 77, 45, 23, 93
290,1976, 26, 19, 22, 71, 129, 173, 188, 170, 134, 107, 61, 7, 92
290,1977, 22, 45, 68, 60, 117, 143, 161, 158, 126, 114, 61, 42, 93
290,1978, 27, 2, 61, 67, 121, 145, 150, 147, 136, 110, 66, 13, 87
290,1979, -39, -22, 41, 73, 116, 150, 150, 151, 125, 96, 45, 46, 78
290,1980, -8, 38, 38, 74, 115, 145, 153, 166, 146, 87, 42, 29, 85
290,1981, 16, 9, 81, 87, 138, 147, 163, 164, 148, 85, 60, -10, 91
290,1982, 3, 23, 50, 71, 122, 161, 186, 169, 160, 112, 76, 31, 97
290,1983, 57, 0, 56, 89, 111, 159, 191, 174, 134, 94, 54, 27, 96
290,1984, 23, 14, 33, 71, 100, 129, 150, 168, 124, 109, 73, 35, 86
290,1985, -46, -14, 35, 81, 132, 131, 165, 150, 132, 97, 17, 52, 78
290,1986, 16, -46, 45, 68, 137, 160, 162, 151, 105, 109, 77, 41, 85
290,1987, -40, 17, 13, 103, 99, 137, 163, 155, 145, 104, 61, 38, 83
290,1988, 58, 42, 43, 81, 144, 145, 160, 166, 139, 104, 53, 55, 99
290,1989, 41, 48, 77, 65, 138, 159, 178, 171, 154, 122, 50, 44, 104
290,1990, 50, 73, 79, 84, 138, 151, 161, 182, 122, 119, 54, 35, 104
290,1991, 29, -9, 83, 81, 97, 126, 188, 173, 147, 94, 50, 32, 91
290,1992, 22, 47, 64, 83, 154, 170, 182, 180, 143, 73, 74, 33, 102
290,1993, 42, 12, 51, 112, 142, 152, 157, 146, 125, 86, 15, 44, 90
290,1994, 44, 6, 70, 81, 123, 151, 213, 174, 133, 86, 87, 48, 101
290,1995, 27, 60, 46, 89, 124, 145, 200, 187, 136, 124, 55, -16, 98
290,1996, -16, -10, 23, 89, 106, 151, 161, 175, 115, 99, 52, -6, 78
290,1997, -17, 58, 72, 70, 124, 157, 173, 201, 134, 89, 57, 41, 97
290,1998, 43, 57, 67, 90, 144, 155, 159, 160, 144, 90, 29, 35, 98
290,1999, 45, 26, 66, 97, 135, 149, 188, 172, 177, 101, 59, 41, 105
290,2000, 37, 52, 63, 102, 145, 160, 152, 169, 150, 111, 77, 46, 105
290,2001, 22, 37, 42, 79, 140, 147, 183, 183, 128, 140, 61, 21, 99
290,2002, 39, 65, 64, 89, 135, 167, 174, 186, 139, 86, 71, 16, 103
290,2003, 16, 7, 68, 93, 134, 179, 185, 193, 139, 66, 78, 33, 99
290,2004, 27, 40, 53, 103, 116, 152, 165, 188, 149, 110, 54, 27, 99
290,2005, 43, 14, 58, 102, 125, 162, 176, 157, 152, 129, 61, 33, 101
290,2006, 4, 18, 32, 85, 143, 168, 222, 159, 177, 136, 88, 62, 108
290,2007, 61, 54, 74, 125, 139, 174, 169, 168, 133, 93, 61, 31, 107
290,2008, 59, 47, 53, 83, 150, 164, 180, 173, 131, 97, 62, 18, 101
290,2009, 1, 26, 55, 125, 137, 153, 178, 182, 144, 93, 94, 17, 100
290,2010, -17, 9, 58, 93, 100, 164, 204, 164, 126, 95, 52, -27, 85
290,2011, 27, 36, 52, 124, 138, 162, 158, 168, 152, 106, 60, 55, 103
290,2012, 36, 1, 77, 82, 145, 145, 169, 184, 134, 96, 64, 41, 98
290,2013, 15, 9, 12, 82, 116, 154, 188, 179, 138, 118, 59, 55, 94
290,2014, 48, 64, 81, 118, 127, 157, 195, 157, 153, 132, 80, 41, 113
"""
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul',
'Aug', 'Sep', 'Oct', 'Nov', 'Dec', 'total']
def parse_data(raw_data):
years, data = [], [[] for i in range(13)]
for line in raw_data.splitlines():
if line.startswith('290'):
parts = [int(i.strip()) for i in line.split(',')]
years.append(parts[1])
for i in range(13):
data[i].append(parts[i+2]/10.0)
return years, data
years, data = parse_data(raw_data)
class Twente(ui.Widget):
def init(self):
with ui.HBox():
ui.Widget(flex=1)
with ui.VBox(flex=0):
with ui.GroupWidget(title='Plot options'):
with ui.VBox():
self.month_label = ui.Label(text='Month')
self.month = ui.Slider(max=12, step=1, value=12)
self.smoothing_label = ui.Label(text='Smoothing')
self.smoothing = ui.Slider(max=20, step=2)
ui.Widget(flex=1)
with ui.VBox(flex=4):
self.plot = ui.PlotWidget(flex=1,
xdata=years, yrange=(-5, 20),
title='Average monthly temperature',
xlabel='year', ylabel=u'temperature (°C)')
# ui.Widget(flex=0, style='height:30px')
ui.Widget(flex=1)
class JS:
def init(self):
super().init()
self._update_plot()
@event.connect('month.value', 'smoothing.value')
def _update_plot(self, *events):
month = self.month.value
smoothing = self.smoothing.value
self.month_label.text = 'Month (%s)' % months[month]
self.smoothing_label.txt = 'Smoothing (%i)' % smoothing
yy1 = data[month]
yy2 = []
sm2 = int(smoothing / 2)
for i in range(len(yy1)):
val = 0
n = 0
for j in range(max(0, i-sm2), min(len(yy1), i+sm2+1)):
val += yy1[j]
n += 1
if n == 0:
yy2.append(yy1[i])
else:
yy2.append(val / n)
self.plot.ydata = yy2
if __name__ == '__main__':
m = app.launch(Twente, runtime='app', title='Temperature 1951 - 2014',
size=(900, 400))
m.style = 'background:#eee;' # more desktop-like
app.run()
|